skip to main content


Search for: All records

Creators/Authors contains: "Silva, Lucas C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. Abstract

    Prescribed fire has been increasingly promoted to reduce wildfire risk and restore fire‐adapted ecosystems. Yet, the complexities of forest ecosystem dynamics in response to disturbances, climate change, and drought stress, combined with myriad social and policy barriers, have inhibited widespread implementation. Using the forest succession model LANDIS‐II, we investigated the likely impacts of increasing prescribed fire frequency and extent on wildfire severity and forest carbon storage at local and landscape scales. Specifically, we ask how much prescribed fire is required to maintain carbon storage and reduce the severity and extent of wildfires under divergent climate change scenarios? We simulated four prescribed fire scenarios (no prescribed fire, business‐as‐usual, moderate increase, and large increase) in the Siskiyou Mountains of northwest California and southwest Oregon. At the local site scale, prescribed fires lowered the severity of projected wildfires and maintained approximately the same level of ecosystem carbon storage when reapplied at a ~15‐year return interval for 50‐year simulations. Increased frequency and extent of prescribed fire decreased the likelihood of aboveground carbon combustion during wildfire events. However, at the landscape scale, prescribed fire did not decrease the projected severity and extent of wildfire, even when large increases (up to 10× the current levels) of prescribed fire were simulated. Prescribed fire was most effective at reducing wildfire severity under a climate change scenario with increased temperature and precipitation and on sites with north‐facing aspects and slopes greater than 30°. Our findings suggest that placement matters more than frequency and extent to estimate the effects of prescribed fire, and that prescribed fire alone would not be sufficient to reduce the risk of wildfire and promote carbon sequestration at regional scales in the Siskiyou Mountains. To improve feasibility, we propose targeting areas of high concern or value to decrease the risk of high‐severity fire and contribute to meeting climate mitigation and adaptation goals. Our results support strategic and targeted landscape prioritization of fire treatments to reduce wildfire severity and increase the pace and scale of forest restoration in areas of social and ecological importance, highlighting the challenges of using prescribed fire to lower wildfire risk.

     
    more » « less
  3. Tropical savannas have been increasingly targeted for carbon sequestration by afforestation, assuming large gains in soil organic carbon (SOC) with increasing tree cover. Because savanna SOC is also derived from grasses, this assumption may not reflect real changes in SOC under afforestation. However, the exact contribution of grasses to SOC and the changes in SOC with increasing tree cover remain poorly understood. Here we combine a case study from Kruger National Park, South Africa, with data synthesized from tropical savannas globally to show that grass-derived carbon constitutes more than half of total SOC to a soil depth of 1 m, even in soils directly under trees. The largest SOC concentrations were associated with the largest grass contributions (>70% of total SOC). Across the tropics, SOC concentration was not explained by tree cover. Both SOC gain and loss were observed following increasing tree cover, and on average SOC storage within a 1-m profile only increased by 6% (s.e. = 4%, n = 44). These results underscore the substantial contribution of grasses to SOC and the considerable uncertainty in SOC responses to increasing tree cover across tropical savannas. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. Introduction

    Logging impacts millions of hectares of forests globally every year, and not only affects tree cover, but also disrupts below-ground soil communities that are essential for forest ecosystems. Soil fungi are particularly vulnerable to such disturbances due to their reliance upon plant hosts as their source of carbon. Fluctuations within the major guilds of fungi important for forest function can have ramifications for plant communities and biogeochemical processes. We addressed questions about soil fungal communities in temperate forest stands with varying logging histories: (1) Do assembly patterns of soil fungal communities and functional guilds reflect historical differences in logging legacies? (2) Does sequencing of below-ground communities of fungi resemble the composition of surveys of fungal fruiting bodies? (3) How do fungal communities in the litter layer differ from those in the soil and do these assembly patterns change with logging history?

    Methods

    Our study took place in the H. J. Andrews Experimental Forest in western Oregon, USA. We sampled soil and litter (Oi—Oe) in three sites with different logging histories: one clear cut in 1974, one selectively logged and thinned three times between 1974 and 2001, and one unlogged. We sequenced soil fungi separately for mineral soil samples and litter samples. Additionally, we compiled fruiting-body studies from 1972 through the present to compare with our eDNA samples.

    Results

    We found that four decades after logging had ceased there were detectable signatures within the soil fungal communities that distinguished logged from unlogged sites, indicating a legacy that affects many generations of fungi (PERMANOVA;p< 0.001 for both soil and litter fungi). There were also significant differences between litter and mineral soil communities (PERMANOVA;p< 0.001) with higher relative abundances of pathogens within the litter layer and a greater proportion of mycorrhizal fungi in the soil.

    Discussion

    These results highlight the importance of including forest litter in studies, as entire guilds of fungi can be underestimated when considering a single fraction. Together, these results have repercussions for the regeneration of forests following logging, as the composition of fungal guilds important to plant functions do not fully recover even after decades of cessation.

     
    more » « less
  5. Abstract The drying power of air, or vapour pressure deficit (VPD), is an important measurement of potential plant stress and productivity. Estimates of VPD values of the past are integral for understanding the link between rising modern atmospheric carbon dioxide (pCO 2 ) and global water balance. A geological record of VPD is needed for paleoclimate studies of past greenhouse spikes which attempt to constrain future climate, but at present there are few quantitative atmospheric moisture proxies that can be applied to fossil material. Here we show that VPD leaves a permanent record in the slope ( S ) of least-squares regressions between stable isotope ratios of carbon and oxygen ( 13 C and 18 O) found in cellulose and pedogenic carbonate. Using previously published data collected across four continents we show that S can be used to reconstruct VPD within and across biomes. As one application, we used S to estimate VPD of 0.46 kPa ± 0.26 kPa for cellulose preserved tens of millions of years ago—in the Eocene (45 Ma) Metasequoia from Axel Heiberg Island, Canada—and 0.82 kPa ± 0.52 kPa—in the Oligocene (26 Ma) for pedogenic carbonate from Oregon, USA—both of which are consistent with existing records at those locations. Finally, we discuss mechanisms that contribute to the positive correlation observed between VPD and S , which could help reconstruct past climatic conditions and constrain future alterations of global carbon and water cycles resulting from modern climate change. 
    more » « less
  6. Marschner Review that provides a synthesis of theory and numerical models developed for this project focusing on scaling up resource transfer between plants and microorganisms in the rhizosphere. 
    more » « less
  7. Abstract

    Tropical peatlands in Southeast Asia cover ∼25 million hectares and exert a strong influence on the global carbon cycle. Recent widespread peatland subsidence and carbon dioxide emissions in response to human activity and climate change have been well documented, but peatland genesis remains poorly understood. Unlike coastal peatlands that established following sea-level stabilization during the mid-Holocene, inland peatlands of Borneo are little studied and have no apparent environmental constraint on their formation. Here, we report radiocarbon dates from the Upper Kapuas Basin which show inland peat formation since at least 47.8 thousand calibrated radiocarbon years before present, ka. We provide a synthesis of new and existing peat basal dates across Borneo, which shows a hiatus in peat genesis during a cool and dry period from 30 to 20 ka. Despite likely peat degradation during that period, the Upper Kapuas is still exceptionally deep, reaching a maximum depth (determined from coring) of 18 m. Our best estimate of mean peat depth over 3833 km2of the Upper Kapuas is 5.16 ± 2.66 m, corresponding to a carbon density of 2790 ± 1440 Mg C ha−1. This is one of the most carbon-dense ecosystems in the world. It withstood the glacial-interglacial climate transition and remains mostly intact, but is increasingly threatened by land-use change.

     
    more » « less
  8. Abstract

    Does drought stress in temperate grasslands alter the relationship between plant structure and function? Here we report data from an experiment focusing on growth form and species traits that affect the critical functions of water‐ and nutrient‐use efficiency in prairie and pasture plant communities. A total of 139 individuals of 12 species (11 genera and four families) were sampled in replicated plots maintained for three years across a 520 km latitudinal gradient in the Pacific Northwest, USA. Rain exclusion did not alter the interspecific relationship between foliar traits and stoichiometry or intrinsic water‐use efficiency (iWUE). Rain exclusion reduced iWUE in grasses, an effect was primarily species‐specific, although leaf morphology, life history strategy, and phylogenetic distance predicted iWUE for all 12 species when analyzed together. Variation in specific leaf area explained most of the variation in iWUE between different functional groups, with annual forbs and annual grasses at opposite ends of the resource‐use spectrum. Our findings are consistent with expected trait‐driven tradeoffs between productivity and resource‐use efficiency, and provide insight into strategies for the sustainable use and conservation of temperate grasslands.

     
    more » « less